En savoir plus

Notre utilisation de cookies

« Cookies » désigne un ensemble d’informations déposées dans le terminal de l’utilisateur lorsque celui-ci navigue sur un site web. Il s’agit d’un fichier contenant notamment un identifiant sous forme de numéro, le nom du serveur qui l’a déposé et éventuellement une date d’expiration. Grâce aux cookies, des informations sur votre visite, notamment votre langue de prédilection et d'autres paramètres, sont enregistrées sur le site web. Cela peut faciliter votre visite suivante sur ce site et renforcer l'utilité de ce dernier pour vous.

Afin d’améliorer votre expérience, nous utilisons des cookies pour conserver certaines informations de connexion et fournir une navigation sûre, collecter des statistiques en vue d’optimiser les fonctionnalités du site. Afin de voir précisément tous les cookies que nous utilisons, nous vous invitons à télécharger « Ghostery », une extension gratuite pour navigateurs permettant de les détecter et, dans certains cas, de les bloquer.

Ghostery est disponible gratuitement à cette adresse : https://www.ghostery.com/fr/products/

Vous pouvez également consulter le site de la CNIL afin d’apprendre à paramétrer votre navigateur pour contrôler les dépôts de cookies sur votre terminal.

S’agissant des cookies publicitaires déposés par des tiers, vous pouvez également vous connecter au site http://www.youronlinechoices.com/fr/controler-ses-cookies/, proposé par les professionnels de la publicité digitale regroupés au sein de l’association européenne EDAA (European Digital Advertising Alliance). Vous pourrez ainsi refuser ou accepter les cookies utilisés par les adhérents de l'EDAA.

Il est par ailleurs possible de s’opposer à certains cookies tiers directement auprès des éditeurs :

Catégorie de cookie

Moyens de désactivation

Cookies analytiques et de performance

Realytics
Google Analytics
Spoteffects
Optimizely

Cookies de ciblage ou publicitaires

DoubleClick
Mediarithmics

Les différents types de cookies pouvant être utilisés sur nos sites internet sont les suivants :

Cookies obligatoires

Cookies fonctionnels

Cookies sociaux et publicitaires

Ces cookies sont nécessaires au bon fonctionnement du site, ils ne peuvent pas être désactivés. Ils nous sont utiles pour vous fournir une connexion sécuritaire et assurer la disponibilité a minima de notre site internet.

Ces cookies nous permettent d’analyser l’utilisation du site afin de pouvoir en mesurer et en améliorer la performance. Ils nous permettent par exemple de conserver vos informations de connexion et d’afficher de façon plus cohérente les différents modules de notre site.

Ces cookies sont utilisés par des agences de publicité (par exemple Google) et par des réseaux sociaux (par exemple LinkedIn et Facebook) et autorisent notamment le partage des pages sur les réseaux sociaux, la publication de commentaires, la diffusion (sur notre site ou non) de publicités adaptées à vos centres d’intérêt.

Sur nos CMS EZPublish, il s’agit des cookies sessions CAS et PHP et du cookie New Relic pour le monitoring (IP, délais de réponse).

Ces cookies sont supprimés à la fin de la session (déconnexion ou fermeture du navigateur)

Sur nos CMS EZPublish, il s’agit du cookie XiTi pour la mesure d’audience. La société AT Internet est notre sous-traitant et conserve les informations (IP, date et heure de connexion, durée de connexion, pages consultées) 6 mois.

Sur nos CMS EZPublish, il n’y a pas de cookie de ce type.

Pour obtenir plus d’informations concernant les cookies que nous utilisons, vous pouvez vous adresser au Déléguée Informatique et Libertés de l’INRA par email à cil-dpo@inra.fr ou par courrier à :

INRA
24, chemin de Borde Rouge –Auzeville – CS52627
31326 Castanet Tolosan cedex - France

Dernière mise à jour : Mai 2018

Menu Logo Principal

Accueil

Micalis

Publications

Biosynthesis of the sactipeptide Ruminococcin C by the human microbiome: Mechanistic insights into thioether bond formation by radical SAM enzymes. Balty C, Guillot A, Fradale L, Brewee C, Lefranc B, Herrero C, Sandström C, Leprince J, Berteau O, Benjdia A.Balty C, et al. J Biol Chem. 2020 Dec 4;295(49):16665-16677. doi: 10.1074/jbc.RA120.015371.

Gold-Catalyzed Spirocyclization Reactions of N-Propargyl Tryptamines and Tryptophans in Aqueous Media. Sabat N, Soualmia F, Retailleau P, Benjdia A, Berteau O, Guinchard X.Sabat N, et al. Org Lett. 2020 Jun 5;22(11):4344-4349. doi: 10.1021/acs.orglett.0c01370. 

The Epipeptide YydF Intrinsically Triggers the Cell Envelope Stress Response of Bacillus subtilis and Causes Severe Membrane Perturbations. Popp PF, Benjdia A, Strahl H, Berteau O, Mascher T.Popp PF, et al. Front Microbiol. 2020 Feb 11;11:151. doi: 10.3389/fmicb.2020.00151.

Ruminococcin C, an anti-clostridial sactipeptide produced by a prominent member of the human microbiota Ruminococcus gnavus. Balty C, Guillot A, Fradale L, Brewee C, Boulay M, Kubiak X, Benjdia A, Berteau O.Balty C, et al. J Biol Chem. 2019 Oct 4;294(40):14512-14525. doi: 10.1074/jbc.RA119.009416.

Mechanistic Investigations of PoyD, a Radical S-Adenosyl-l-methionine Enzyme Catalyzing Iterative and Directional Epimerizations in Polytheonamide A Biosynthesis. Parent A, Benjdia A, Guillot A, Kubiak X, Balty C, Lefranc B, Leprince J, Berteau O.Parent A, et al. J Am Chem Soc. 2018 Feb 21;140(7):2469-2477. doi: 10.1021/jacs.7b08402.

Radical SAM Enzymes in the Biosynthesis of Ribosomally Synthesized and Post-translationally Modified Peptides (RiPPs). Benjdia A, Balty C, Berteau O.Benjdia A, et al. Front Chem. 2017 Nov 8;5:87. doi: 10.3389/fchem.2017.00087.

Post-translational modification of ribosomally synthesized peptides by a radical SAM epimerase in Bacillus subtilis. Benjdia A, Guillot A, Ruffié P, Leprince J, Berteau O.Benjdia A, et al. Nat Chem. 2017 Jul;9(7):698-707. doi: 10.1038/nchem.2714.

Insights into the catalysis of a lysine-tryptophan bond in bacterial peptides by a SPASM domain radical S-adenosylmethionine (SAM) peptide cyclase. Benjdia A, Decamps L, Guillot A, Kubiak X, Ruffié P, Sandström C, Berteau O.Benjdia A, et al. J Biol Chem. 2017 Jun 30;292(26):10835-10844. doi: 10.1074/jbc.M117.783464.

DNA Repair by the Radical SAM Enzyme Spore Photoproduct Lyase: From Biochemistry to Structural Investigations. Berteau O, Benjdia A.Berteau O, et al. Photochem Photobiol. 2017 Jan;93(1):67-77. doi: 10.1111/php.12702.

The B12-Radical SAM Enzyme PoyC Catalyzes Valine Cβ-Methylation during Polytheonamide Biosynthesis. Parent A, Guillot A, Benjdia A, Chartier G, Leprince J, Berteau O.Parent A, et al. J Am Chem Soc. 2016 Dec 7;138(48):15515-15518. doi: 10.1021/jacs.6b06697.

Carbon-sulfur bond-forming reaction catalysed by the radical SAM enzyme HydE. Rohac R, Amara P, Benjdia A, Martin L, Ruffié P, Favier A, Berteau O, Mouesca JM, Fontecilla-Camps JC, Nicolet Y.Rohac R, et al. Nat Chem. 2016 May;8(5):491-500. doi: 10.1038/nchem.2490.

Thioether bond formation by SPASM domain radical SAM enzymes: Cα H-atom abstraction in subtilosin A biosynthesis. Benjdia A, Guillot A, Lefranc B, Vaudry H, Leprince J, Berteau O.Benjdia A, et al. Chem Commun (Camb). 2016 May 7;52(37):6249-6252. doi: 10.1039/c6cc01317a.

Sulfatases and radical SAM enzymes: emerging themes in glycosaminoglycan metabolism and the human microbiota. Benjdia A, Berteau O.Benjdia A, et al. Biochem Soc Trans. 2016 Feb;44(1):109-15. doi: 10.1042/BST20150191.

The thiostrepton A tryptophan methyltransferase TsrM catalyses a cob(II)alamin-dependent methyl transfer reaction. Benjdia A, Pierre S, Gherasim C, Guillot A, Carmona M, Amara P, Banerjee R, Berteau O.Benjdia A, et al. Nat Commun. 2015 Oct 12;6:8377. doi: 10.1038/ncomms9377.

Rescuing DNA repair activity by rewiring the H-atom transfer pathway in the radical SAM enzyme, spore photoproduct lyase. Benjdia A, Heil K, Winkler A, Carell T, Schlichting I.Benjdia A, et al. Chem Commun (Camb). 2014 Nov 25;50(91):14201-4. doi: 10.1039/c4cc05158k.

Characterization of glycosaminoglycan (GAG) sulfatases from the human gut symbiont Bacteroides thetaiotaomicron reveals the first GAG-specific bacterial endosulfatase. Ulmer JE, Vilén EM, Namburi RB, Benjdia A, Beneteau J, Malleron A, Bonnaffé D, Driguez PA, Descroix K, Lassalle G, Le Narvor C, Sandström C, Spillmann D, Berteau O.Ulmer JE, et al. J Biol Chem. 2014 Aug 29;289(35):24289-303. doi: 10.1074/jbc.M114.573303.

A radical transfer pathway in spore photoproduct lyase. Yang L, Nelson RS, Benjdia A, Lin G, Telser J, Stoll S, Schlichting I, Li L.Yang L, et al. Biochemistry. 2013 May 7;52(18):3041-50. doi: 10.1021/bi3016247.

DNA photolyases and SP lyase: structure and mechanism of light-dependent and independent DNA lyases. Benjdia A.Benjdia A. Curr Opin Struct Biol. 2012 Dec;22(6):711-20. doi: 10.1016/j.sbi.2012.10.002.

Biosynthesis of F0, precursor of the F420 cofactor, requires a unique two radical-SAM domain enzyme and tyrosine as substrate. Decamps L, Philmus B, Benjdia A, White R, Begley TP, Berteau O.Decamps L, et al. J Am Chem Soc. 2012 Nov 7;134(44):18173-6. doi: 10.1021/ja307762b

Thiostrepton tryptophan methyltransferase expands the chemistry of radical SAM enzymes. Pierre S, Guillot A, Benjdia A, Sandström C, Langella P, Berteau O.Pierre S, et al. Nat Chem Biol. 2012 Dec;8(12):957-9. doi: 10.1038/nchembio.1091.

Structural insights into recognition and repair of UV-DNA damage by Spore Photoproduct Lyase, a radical SAM enzyme. Benjdia A, Heil K, Barends TR, Carell T, Schlichting I.Benjdia A, et al. Nucleic Acids Res. 2012 Oct;40(18):9308-18. doi: 10.1093/nar/gks603.

Chondroitin-4-O-sulfatase from Bacteroides thetaiotaomicron: exploration of the substrate specificity. Malleron A, Benjdia A, Berteau O, Le Narvor C.Malleron A, et al. Carbohydr Res. 2012 May 15;353:96-9. doi: 10.1016/j.carres.2012.03.033.

Sulfatases and a radical S-adenosyl-L-methionine (AdoMet) enzyme are key for mucosal foraging and fitness of the prominent human gut symbiont, Bacteroides thetaiotaomicron. Benjdia A, Martens EC, Gordon JI, Berteau O. Benjdia A, et al. J Biol Chem. 2011 Jul 22;286(29):25973-82. doi: 10.1074/jbc.M111.228841.