Know more

Our use of cookies

Cookies are a set of data stored on a user’s device when the user browses a web site. The data is in a file containing an ID number, the name of the server which deposited it and, in some cases, an expiry date. We use cookies to record information about your visit, language of preference, and other parameters on the site in order to optimise your next visit and make the site even more useful to you.

To improve your experience, we use cookies to store certain browsing information and provide secure navigation, and to collect statistics with a view to improve the site’s features. For a complete list of the cookies we use, download “Ghostery”, a free plug-in for browsers which can detect, and, in some cases, block cookies.

Ghostery is available here for free:

You can also visit the CNIL web site for instructions on how to configure your browser to manage cookie storage on your device.

In the case of third-party advertising cookies, you can also visit the following site:, offered by digital advertising professionals within the European Digital Advertising Alliance (EDAA). From the site, you can deny or accept the cookies used by advertising professionals who are members.

It is also possible to block certain third-party cookies directly via publishers:

Cookie type

Means of blocking

Analytical and performance cookies

Google Analytics

Targeted advertising cookies


The following types of cookies may be used on our websites:

Mandatory cookies

Functional cookies

Social media and advertising cookies

These cookies are needed to ensure the proper functioning of the site and cannot be disabled. They help ensure a secure connection and the basic availability of our website.

These cookies allow us to analyse site use in order to measure and optimise performance. They allow us to store your sign-in information and display the different components of our website in a more coherent way.

These cookies are used by advertising agencies such as Google and by social media sites such as LinkedIn and Facebook. Among other things, they allow pages to be shared on social media, the posting of comments, and the publication (on our site or elsewhere) of ads that reflect your centres of interest.

Our EZPublish content management system (CMS) uses CAS and PHP session cookies and the New Relic cookie for monitoring purposes (IP, response times).

These cookies are deleted at the end of the browsing session (when you log off or close your browser window)

Our EZPublish content management system (CMS) uses the XiTi cookie to measure traffic. Our service provider is AT Internet. This company stores data (IPs, date and time of access, length of the visit and pages viewed) for six months.

Our EZPublish content management system (CMS) does not use this type of cookie.

For more information about the cookies we use, contact INRA’s Data Protection Officer by email at or by post at:

24, chemin de Borde Rouge –Auzeville – CS52627
31326 Castanet Tolosan CEDEX - France

Dernière mise à jour : Mai 2018

Menu Logo Principal

Home page



Biosynthesis of the sactipeptide Ruminococcin C by the human microbiome: Mechanistic insights into thioether bond formation by radical SAM enzymes. Balty C, Guillot A, Fradale L, Brewee C, Lefranc B, Herrero C, Sandström C, Leprince J, Berteau O, Benjdia A.Balty C, et al. J Biol Chem. 2020 Dec 4;295(49):16665-16677. doi: 10.1074/jbc.RA120.015371.

Gold-Catalyzed Spirocyclization Reactions of N-Propargyl Tryptamines and Tryptophans in Aqueous Media. Sabat N, Soualmia F, Retailleau P, Benjdia A, Berteau O, Guinchard X.Sabat N, et al. Org Lett. 2020 Jun 5;22(11):4344-4349. doi: 10.1021/acs.orglett.0c01370. 

The Epipeptide YydF Intrinsically Triggers the Cell Envelope Stress Response of Bacillus subtilis and Causes Severe Membrane Perturbations. Popp PF, Benjdia A, Strahl H, Berteau O, Mascher T.Popp PF, et al. Front Microbiol. 2020 Feb 11;11:151. doi: 10.3389/fmicb.2020.00151.

Ruminococcin C, an anti-clostridial sactipeptide produced by a prominent member of the human microbiota Ruminococcus gnavus. Balty C, Guillot A, Fradale L, Brewee C, Boulay M, Kubiak X, Benjdia A, Berteau O.Balty C, et al. J Biol Chem. 2019 Oct 4;294(40):14512-14525. doi: 10.1074/jbc.RA119.009416.

Mechanistic Investigations of PoyD, a Radical S-Adenosyl-l-methionine Enzyme Catalyzing Iterative and Directional Epimerizations in Polytheonamide A Biosynthesis. Parent A, Benjdia A, Guillot A, Kubiak X, Balty C, Lefranc B, Leprince J, Berteau O.Parent A, et al. J Am Chem Soc. 2018 Feb 21;140(7):2469-2477. doi: 10.1021/jacs.7b08402.

Radical SAM Enzymes in the Biosynthesis of Ribosomally Synthesized and Post-translationally Modified Peptides (RiPPs). Benjdia A, Balty C, Berteau O.Benjdia A, et al. Front Chem. 2017 Nov 8;5:87. doi: 10.3389/fchem.2017.00087.

Post-translational modification of ribosomally synthesized peptides by a radical SAM epimerase in Bacillus subtilis. Benjdia A, Guillot A, Ruffié P, Leprince J, Berteau O.Benjdia A, et al. Nat Chem. 2017 Jul;9(7):698-707. doi: 10.1038/nchem.2714.

Insights into the catalysis of a lysine-tryptophan bond in bacterial peptides by a SPASM domain radical S-adenosylmethionine (SAM) peptide cyclase. Benjdia A, Decamps L, Guillot A, Kubiak X, Ruffié P, Sandström C, Berteau O.Benjdia A, et al. J Biol Chem. 2017 Jun 30;292(26):10835-10844. doi: 10.1074/jbc.M117.783464.

DNA Repair by the Radical SAM Enzyme Spore Photoproduct Lyase: From Biochemistry to Structural Investigations. Berteau O, Benjdia A.Berteau O, et al. Photochem Photobiol. 2017 Jan;93(1):67-77. doi: 10.1111/php.12702.

The B12-Radical SAM Enzyme PoyC Catalyzes Valine Cβ-Methylation during Polytheonamide Biosynthesis. Parent A, Guillot A, Benjdia A, Chartier G, Leprince J, Berteau O.Parent A, et al. J Am Chem Soc. 2016 Dec 7;138(48):15515-15518. doi: 10.1021/jacs.6b06697.

Carbon-sulfur bond-forming reaction catalysed by the radical SAM enzyme HydE. Rohac R, Amara P, Benjdia A, Martin L, Ruffié P, Favier A, Berteau O, Mouesca JM, Fontecilla-Camps JC, Nicolet Y.Rohac R, et al. Nat Chem. 2016 May;8(5):491-500. doi: 10.1038/nchem.2490.

Thioether bond formation by SPASM domain radical SAM enzymes: Cα H-atom abstraction in subtilosin A biosynthesis. Benjdia A, Guillot A, Lefranc B, Vaudry H, Leprince J, Berteau O.Benjdia A, et al. Chem Commun (Camb). 2016 May 7;52(37):6249-6252. doi: 10.1039/c6cc01317a.

Sulfatases and radical SAM enzymes: emerging themes in glycosaminoglycan metabolism and the human microbiota. Benjdia A, Berteau O.Benjdia A, et al. Biochem Soc Trans. 2016 Feb;44(1):109-15. doi: 10.1042/BST20150191.

The thiostrepton A tryptophan methyltransferase TsrM catalyses a cob(II)alamin-dependent methyl transfer reaction. Benjdia A, Pierre S, Gherasim C, Guillot A, Carmona M, Amara P, Banerjee R, Berteau O.Benjdia A, et al. Nat Commun. 2015 Oct 12;6:8377. doi: 10.1038/ncomms9377.

Rescuing DNA repair activity by rewiring the H-atom transfer pathway in the radical SAM enzyme, spore photoproduct lyase. Benjdia A, Heil K, Winkler A, Carell T, Schlichting I.Benjdia A, et al. Chem Commun (Camb). 2014 Nov 25;50(91):14201-4. doi: 10.1039/c4cc05158k.

Characterization of glycosaminoglycan (GAG) sulfatases from the human gut symbiont Bacteroides thetaiotaomicron reveals the first GAG-specific bacterial endosulfatase. Ulmer JE, Vilén EM, Namburi RB, Benjdia A, Beneteau J, Malleron A, Bonnaffé D, Driguez PA, Descroix K, Lassalle G, Le Narvor C, Sandström C, Spillmann D, Berteau O.Ulmer JE, et al. J Biol Chem. 2014 Aug 29;289(35):24289-303. doi: 10.1074/jbc.M114.573303.

A radical transfer pathway in spore photoproduct lyase. Yang L, Nelson RS, Benjdia A, Lin G, Telser J, Stoll S, Schlichting I, Li L.Yang L, et al. Biochemistry. 2013 May 7;52(18):3041-50. doi: 10.1021/bi3016247.

DNA photolyases and SP lyase: structure and mechanism of light-dependent and independent DNA lyases. Benjdia A.Benjdia A. Curr Opin Struct Biol. 2012 Dec;22(6):711-20. doi: 10.1016/

Biosynthesis of F0, precursor of the F420 cofactor, requires a unique two radical-SAM domain enzyme and tyrosine as substrate. Decamps L, Philmus B, Benjdia A, White R, Begley TP, Berteau O.Decamps L, et al. J Am Chem Soc. 2012 Nov 7;134(44):18173-6. doi: 10.1021/ja307762b

Thiostrepton tryptophan methyltransferase expands the chemistry of radical SAM enzymes. Pierre S, Guillot A, Benjdia A, Sandström C, Langella P, Berteau O.Pierre S, et al. Nat Chem Biol. 2012 Dec;8(12):957-9. doi: 10.1038/nchembio.1091.

Structural insights into recognition and repair of UV-DNA damage by Spore Photoproduct Lyase, a radical SAM enzyme. Benjdia A, Heil K, Barends TR, Carell T, Schlichting I.Benjdia A, et al. Nucleic Acids Res. 2012 Oct;40(18):9308-18. doi: 10.1093/nar/gks603.

Chondroitin-4-O-sulfatase from Bacteroides thetaiotaomicron: exploration of the substrate specificity. Malleron A, Benjdia A, Berteau O, Le Narvor C.Malleron A, et al. Carbohydr Res. 2012 May 15;353:96-9. doi: 10.1016/j.carres.2012.03.033.

Sulfatases and a radical S-adenosyl-L-methionine (AdoMet) enzyme are key for mucosal foraging and fitness of the prominent human gut symbiont, Bacteroides thetaiotaomicron. Benjdia A, Martens EC, Gordon JI, Berteau O. Benjdia A, et al. J Biol Chem. 2011 Jul 22;286(29):25973-82. doi: 10.1074/jbc.M111.228841.