Know more

Our use of cookies

Cookies are a set of data stored on a user’s device when the user browses a web site. The data is in a file containing an ID number, the name of the server which deposited it and, in some cases, an expiry date. We use cookies to record information about your visit, language of preference, and other parameters on the site in order to optimise your next visit and make the site even more useful to you.

To improve your experience, we use cookies to store certain browsing information and provide secure navigation, and to collect statistics with a view to improve the site’s features. For a complete list of the cookies we use, download “Ghostery”, a free plug-in for browsers which can detect, and, in some cases, block cookies.

Ghostery is available here for free: https://www.ghostery.com/fr/products/

You can also visit the CNIL web site for instructions on how to configure your browser to manage cookie storage on your device.

In the case of third-party advertising cookies, you can also visit the following site: http://www.youronlinechoices.com/fr/controler-ses-cookies/, offered by digital advertising professionals within the European Digital Advertising Alliance (EDAA). From the site, you can deny or accept the cookies used by advertising professionals who are members.

It is also possible to block certain third-party cookies directly via publishers:

Cookie type

Means of blocking

Analytical and performance cookies

Realytics
Google Analytics
Spoteffects
Optimizely

Targeted advertising cookies

DoubleClick
Mediarithmics

The following types of cookies may be used on our websites:

Mandatory cookies

Functional cookies

Social media and advertising cookies

These cookies are needed to ensure the proper functioning of the site and cannot be disabled. They help ensure a secure connection and the basic availability of our website.

These cookies allow us to analyse site use in order to measure and optimise performance. They allow us to store your sign-in information and display the different components of our website in a more coherent way.

These cookies are used by advertising agencies such as Google and by social media sites such as LinkedIn and Facebook. Among other things, they allow pages to be shared on social media, the posting of comments, and the publication (on our site or elsewhere) of ads that reflect your centres of interest.

Our EZPublish content management system (CMS) uses CAS and PHP session cookies and the New Relic cookie for monitoring purposes (IP, response times).

These cookies are deleted at the end of the browsing session (when you log off or close your browser window)

Our EZPublish content management system (CMS) uses the XiTi cookie to measure traffic. Our service provider is AT Internet. This company stores data (IPs, date and time of access, length of the visit and pages viewed) for six months.

Our EZPublish content management system (CMS) does not use this type of cookie.

For more information about the cookies we use, contact INRA’s Data Protection Officer by email at cil-dpo@inra.fr or by post at:

INRA
24, chemin de Borde Rouge –Auzeville – CS52627
31326 Castanet Tolosan CEDEX - France

Dernière mise à jour : Mai 2018

Menu Logo Principal

Home page

Micalis

Mutagenesis in single cell and Evolution - MUSE

logo équipe

Marina Elez

Marianne De Paepe

Lydia Robert

 

phages

Our research in brief

The generation of variation in the DNA sequence of genomes is a prerequisite for adaptation, on which the long-term survival of species depends. These variations occur spontaneously and can also be induced by DNA damage. Previous research relying on bulk population measurements has revealed that multiple cellular mechanisms control their occurrences: replication fidelity, repair efficiency, induction of stress responses. Bulk studies have also unveiled that most of that variability is neutral.

Our group seeks to complement this knowledge by addressing the generation of variation and its consequences directly at the single cell level, under dynamically controllable conditions. To do so, we develop new tools that combine genetics, molecular biology, fluorescent microscopy, optogenetics, microfluidics, analysis software and modelling.

Fist, these tools enable us to study cell-to-cell variability in the processes controlling the generation of variability. We focus in particular on the generation of point mutations arising from replication errors. Second, they allow us to we measure directly and quantitatively the impact of antibiotics on the generation of genetic variability.

Third, we use these tools, along with more classical approaches, to investigate phage – bacteria reciprocal modulation of mutation rate and to determine the factors responsible for the high mutation rate of bacteriophages.

Fundings

ANR MUMI (2020-2024) Phage and bacteria reciprocal modulation of mutation rate; M. Elez & M. De Paepe

DIM Elicit (36 months; start date jan 2020)  Integrated single-cell level system for investigating mutations and evolution; L. Robert & M. Elez

ANR PRIMAVERA (36 months; start date march 2020) Profiles of Intestinal Membrane Vesicles and Viruses Associated to IBD; M. De Paepe

ANR JCJC (48 months; start date oct 2019) Transient mutators and evolution of antibiotic resistance; L. Robert

Institut Universitaire de France (60 months; start date oct 2019) Directly Measuring Mutation Rates in Single Living Cells​; M. Elez

Emergences Ville de Paris (48 months; start date nov 2018) Directly Measuring Mutation Rates in Single Living Cells​; M. Elez