Know more

Our use of cookies

Cookies are a set of data stored on a user’s device when the user browses a web site. The data is in a file containing an ID number, the name of the server which deposited it and, in some cases, an expiry date. We use cookies to record information about your visit, language of preference, and other parameters on the site in order to optimise your next visit and make the site even more useful to you.

To improve your experience, we use cookies to store certain browsing information and provide secure navigation, and to collect statistics with a view to improve the site’s features. For a complete list of the cookies we use, download “Ghostery”, a free plug-in for browsers which can detect, and, in some cases, block cookies.

Ghostery is available here for free: https://www.ghostery.com/fr/products/

You can also visit the CNIL web site for instructions on how to configure your browser to manage cookie storage on your device.

In the case of third-party advertising cookies, you can also visit the following site: http://www.youronlinechoices.com/fr/controler-ses-cookies/, offered by digital advertising professionals within the European Digital Advertising Alliance (EDAA). From the site, you can deny or accept the cookies used by advertising professionals who are members.

It is also possible to block certain third-party cookies directly via publishers:

Cookie type

Means of blocking

Analytical and performance cookies

Realytics
Google Analytics
Spoteffects
Optimizely

Targeted advertising cookies

DoubleClick
Mediarithmics

The following types of cookies may be used on our websites:

Mandatory cookies

Functional cookies

Social media and advertising cookies

These cookies are needed to ensure the proper functioning of the site and cannot be disabled. They help ensure a secure connection and the basic availability of our website.

These cookies allow us to analyse site use in order to measure and optimise performance. They allow us to store your sign-in information and display the different components of our website in a more coherent way.

These cookies are used by advertising agencies such as Google and by social media sites such as LinkedIn and Facebook. Among other things, they allow pages to be shared on social media, the posting of comments, and the publication (on our site or elsewhere) of ads that reflect your centres of interest.

Our EZPublish content management system (CMS) uses CAS and PHP session cookies and the New Relic cookie for monitoring purposes (IP, response times).

These cookies are deleted at the end of the browsing session (when you log off or close your browser window)

Our EZPublish content management system (CMS) uses the XiTi cookie to measure traffic. Our service provider is AT Internet. This company stores data (IPs, date and time of access, length of the visit and pages viewed) for six months.

Our EZPublish content management system (CMS) does not use this type of cookie.

For more information about the cookies we use, contact INRA’s Data Protection Officer by email at cil-dpo@inra.fr or by post at:

INRA
24, chemin de Borde Rouge –Auzeville – CS52627
31326 Castanet Tolosan CEDEX - France

Dernière mise à jour : Mai 2018

Menu INRA

Home page

Micalis

Cell biology of cellular processes occurring across the bacterial cell wall

We are also exploring the cell biology of cellular processes occurring about across the bacterial cell wall and/or requiring cell wall remodeling, such as phage infection, genetic competence and sporulation. These are collaborative projects mainly funded by the ANR (French National Research Agency)

  • Together with the lab of Paulo Tavares (i2BC, Gif-sur-Yvette, France), specialized in phage biology, we study the cell biology of phage infection. The biological system under study is the well-characterized bacteriophage SPP1 that infects B. subtilis. We discovered that during infection SPP1 builds spatially independent factories for viral genome replication and assembly of viral particles in the bacterial cytoplasm. Our collaboration aims to characterize molecular and cellular mechanisms underlying formation of these factories.
  • In collaboration with the teams of Patrice Polard (LMGM, Toulouse) and Christophe Grangeasse (MMSB, Lyon), we are studying competence for genetic transformation of the human pathogen Streptococcus pneumoniae (the streptococcus). Our project focuses on the molecular characterization of a programmed cell growth arrest that occurs during competence, with the aim of understanding how the pneumococcus coordinates competence for genetic transformation with its life cycle.
  • When facing severe nutritional stress, B. subtilis forms highly resistant endospores. The pathway to sporulation is probably the best-studied developmental program in bacteria. Yet, the function of many genes expressed during this process remains a mystery. In collaboration with Ciaran Condon (IPBC, Paris), we are trying to understand the role of an orphan ribonuclease that is expressed specifically in the mother cell during sporulation and may be part of a sporulation-specific degradosome-like complex with an additional role in spore coat assembly
science_PhagesInfection_STK_merged_row_woMbStaining

Legend: Time-lapse microscopy of  SPP1 bacteriophage infection of B. subtilis cells.

Left, phase contrast images. Right, SPP1 phage DNA labeled with FROS.